Systems Engineering

Courses

Engineering (EG)

Systems Engineering (SE)

SE 500  Engr Probability & Statistics  3 cr  
Probability and statistical concepts; discrete, continuous, and joint distributions; point and interval estimation; hypothesis testing; regression and correlation analysis; analysis of variance.
SE 501  Engineering Optimization  3 cr  
Model construction, linear programming, network models, dynamic models, stochastic models, queuing theory, and decision theory.
Prerequisite: SE 500 (may be taken concurrently) Minimum Grade of B  
SE 590  Special Topics in SE  3 cr  
Topics of current interest in Systems Engineering. Fee
SE 592  Directed Study in SE  3 cr  
Directed study, under the guidance of a faculty advisor, of a topic from the field of Systems Engineering not offered in a regularly scheduled course. Requires Instructor's permission.
SE 594  Projects in SE  3 cr  
An investigation of an original problem in Systems Engineering, under the guidance of a faculty advisor. Approval of the project prospectus by the student's advisory committee and consent of the Director of Engineering Graduate Studies.
SE 599  Thesis  1-6 cr  
An investigation of an original problem in Systems Engineering under the guidance of the student's major professor. Approval of the dissertation prospectus by the student's Advisory Committee, the Graduate School, and consent of the Director of Engineering Graduate Studies.
SE 601  Systems Eng Fundamentals  3 cr  
Fundamentals of systems engineering, structure of complex systems, system development process, systems engineering management and documentation, needs analysis, requirements development, engineering design and development, integration and test, change management, process improvement.
SE 602  Risk and Failure Analysis  3 cr  
Risk Analysis needs, risk analysis methods, performance requirement analysis, trade studies, failure analysis needs, failure analysis tracking, and failure analysis methods. Pre-requisites: Requires a background in calculus-based statistics and permission of instructor.
SE 603  Integration, Test & Evaluation  3 cr  
Interface control documents, design reviews, requirements management, allocation of test methods to requirements, test plans, test procedures, test execution, and failure tracking and resolution.
Prerequisite: SE 601 Minimum Grade of C  
SE 604  Software Systems Engineering  3 cr  
Software development methodologies, software development tools, change management, software concept development, software requirements development and allocation, coding and unit test, program technical interfaces, software engineering management.
Prerequisite: SE 601 Minimum Grade of C  
SE 605  Project Engineering  3 cr  
Management of system design, development and risk, work breakdown, structure, systems engineering management plan, design reviews, budget and schedule analyses, negotiation and conflict resolution, contracts, customer interactions, team selection, failure resolution.
SE 606  Systems Architecture  3 cr  
The systems architecture is that foundational structure of a system, capturing the core capability and structure of the system. This course will cover principles of systems architecting, system architecture drivers, relationship of systems architecture to system requirements, common tools and techniques to include design structure matrices, IDEF0, SysML, and simulation.
Prerequisite: SE 601 Minimum Grade of C  
SE 607  Systems Simulation  3 cr  
This course rigorously examines system modeling and simulation methodologies, emphasizing statistical analysis and discrete-event simulation via simulation software.
SE 608  Reliability Engineering  3 cr  
This course rigorously examines reliability. and maintainability methodologies, emphasizing mathematical constructs, design concepts, and data analysis employed to quantify reliability, availability, and maintainability measures for operational readiness, support system design, and system effectiveness.
SE 609  Engineering Research Methods  3 cr  
This course is a fast tracked course examining quantitative and qualitative methods for conducting meaningful inquiry and research. Topics include research ethics, intent, design, methodologies, techniques, formatting, data management, analysis, publication, and presentation utilizing common statistical approaches.
SE 610  Systems Thinking  3 cr  
The act of systems thinking is taking a step back from the details considered during engineering design, and looking at the whole picture. This class exposes the student to a conceptual framework to allow them to properly define complex systems and enterprises drawing from synthesizing techniques from systems science, soft systems methodologies, and systems engineering. The class demonstrates the ability to leverage the simultaneity of perspectives, the role of paradox, and the centrality of soft issues in resolving complexity.
SE 611  Socio-Technical Systems  3 cr  
Socio-Technical systems are those systems which contain and/or are strongly influenced by human, social and institutional elements. Because of those influences, they quickly become dependent on community partnerships, infrastructure constraints, and government-aspects that are not traditionally part of the engineering equation. This course considers the systems engineering approach as it relates to the challenges of socio-technical systems.
SE 612  Production System Engineering  3 cr  
This course rigorously examines principles, design, models and techniques for operational planning and analysis of production and distribution systems emphasizing quantitative methods.
SE 613  Decision Analysis  3 cr  
This course will give the engineering student the analysis techniques used to assess single participant multiple criteria and multiple participant multiple criteria decisions. As decisions occur throughout the lifecycle of a system, the variety of engineering decision techniques introduced can be applied to a myriad of decisions.
SE 614  Sys Lifecycle Cost Analysis  3 cr  
Systems engineering considers the entire lifecycle of a system. Therefore, it makes sense to consider the entire cost of the product or system form cradle to grave. This course presents methods, processes, and tools needed to conduct cost analysis, estimation, and management of complex systems.
SE 615  Engineering Management  3 cr  
Engineering management is an integral part of any engineered system. Topics to be covered include team project vision, mission, goals, organization, tools, management and leadership, managing technical issues, coordination and control. This course is relevant to any engineering or technical discipline.
SE 616  Requirements Engineering  3 cr  
Systems requirements are the foundation of all engineered systems. They form the basis for what the customer wants, what the engineer produces, and what the system accomplishes. There must be synergy between those three perspectives. This course addresses the process of identifying systems requirements before the system exists, writing effective and concise requirements, writing testable requirements, and the management of those requirements as the system is engineered.
SE 621  Digital Twin Foundations  3 cr  
The realm of designing and defining digital twins will belong to the systems engineer of the future. The Unity game engine is a gateway to mastering development of high-caliber digital twins and creating unparalleled virtual prototypes. Students will be prepared to take the Unity Associate Game Developer Certification. Prior programming experience useful, but not required.
SE 622  Systems Engineering Internship  1-3 cr  
The Systems Engineering Internship provides students with the opportunity to work up in an engineering role. In this course students will learn to apply their knowledge of Systems Engineering to practical engineering problems in the workplace.
SE 690  Special Topics in SE  3 cr  
Topics of current interest in Systems Engineering.
SE 692  Directed Studies  3 cr  
Directed study, under the guidance of a faculty advisor, of a topic from the field of Systems Engineering not offered in a regularly scheduled course. Prerequisite: Instructor's permission.
SE 699  Dissertation  1-6 cr  
An investigation of an original problem in Systems Engineering under the guidance of the student's major professor. Prerequisite: Approval of the dissertation prospectus by the student's Advisory Committee, the Graduate School, and consent of the Director of Engineering Graduate Studies.

Faculty

Faculty NameFaculty DepartmentFaculty PositionDegrees Held
Lippert, Kari Joann General Engineering Assistant ProfessorBS, University of Toledo
MS, Johns Hopkins University
DSC, University of South Alabama